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Abstract
In this study the applicability of the lattice Boltzmann method to oscillatory
channel flow with a zero mean velocity has been evaluated. The model has been
compared to exact analytical solutions in the laminar case (Reδ < 100, where
Reδ is the Reynolds number based on the Stokes layer) for the Womersley
parameter 1 < α < 31. In this regime, there was good agreement between
numerical and exact analytical solutions. The model was then applied to
study the primary instability of oscillatory channel flow with a zero mean
velocity. For these transitionary flows the parameters were varied in the
range 400 < Reδ < 1000 and 4 < α < 16. Disturbances superimposed
on the numerical solution triggered the two-dimensional primary instability.
This phenomenon has not been numerically evaluated over the range of α or
Reδ currently investigated. The results are consistent with quasi-steady linear
stability theories and previous numerical investigations.

PACS numbers: 47.11.+j, 47.15.−x, 47.27.Cn

1. Introduction

This investigation is concerned with the lattice Boltzmann method (LBM) applied to the
generation of the primary instability in oscillatory flow. Oscillatory and pulsating flows occur
both naturally and in engineering applications ranging from chemical mixing and offshore
engineering to respiratory, vascular and acoustic flows. Here, purely oscillatory flow with
a zero mean velocity in wall-bounded channels is examined. This problem was chosen to
evaluate the LBM applied to unsteady flow as it is one of the simplest unsteady flows possible,
has an exact analytical solution of the Navier–Stokes equations and can serve as a prototype
problem from which conclusions can be inferred for more complicated non-periodic flows.
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For the laminar regime of such flows, experimental and analytical results agree well and
so the LBM is compared to an exact solution enabling the accuracy of the implemented model
to be examined. In the transition regimes there are conflicting results between experimental
measurements [1–6] and analytical stability analyses [7, 8] in terms of predicting the phase
of the onset of turbulence, with some stability analyses not predicting instability growth over
a large range of wavenumber and Reynolds number (based on Stokes length) [9]. Evidently
numerical modelling plays an important role in studying such phenomena although there have
been relatively few numerical studies performed relating to purely oscillatory flows in the
transition regime, most notably [10].

The relative merits of the LBM itself are now well established [11, 12]; it lends itself
naturally to parallel implementation, boundary conditions are easily applied and it is easily
interpreted in physical terms. Historically, the LBM has evolved from lattice gas models.
Lattice gas models belong to a class of cellular automata consisting of a lattice of sites which
can take on a finite number of states. The automaton evolves in discrete time steps with the
state at each site at any time determined by its own state and the state of a set of neighbouring
sites at the previous time step. The lattice gas model represents fluid particles colliding and
propagating throughout a fluid and hence the ease of physical interpretation. Importantly,
the LBM overcomes difficulties associated with the lattice gas models by considering the
evolution of distribution functions rather than individual fluid particles.

2. Oscillatory flow

The dominant features of oscillatory flows, in the context of the current investigation, are
characterized by two non-dimensional parameters. The first is the Womersley parameter
α = a

√
ω/ν with a being the channel half-width, ω the angular frequency and ν the kinematic

viscosity of the fluid. The second is the Reynolds number based on the Stokes layer thickness,
Reδ = U0δ/ν with U0 being the maximum amplitude of the velocity and δ = √

2ν/ω

is the Stokes layer thickness. The Stokes parameter � is often used instead of α with
� = a/δ = α/

√
2.

Previous experimental studies of such flows [1–6] indicate that there are three general
categories of flow regimes: laminar flow, disturbed laminar flow and intermittently turbulent
flow. The laminar regime and the development of the primary instability which is an important
mechanism in the transition to intermittent turbulent flow are of interest in this investigation.
For an analytical solution corresponding to the laminar case [13], consider flow in an infinitely
long, two-dimensional channel of width 2a which is being driven by a sinusoidally varying
pressure gradient

∂p

∂x
= −p∗ eiωt (1)

where the x-axis is in the centre of the channel parallel to the walls, the streamwise direction,
and the y-axis is perpendicular to the walls, the spanwise direction. Here p∗ is the maximum
amplitude of the sinusoidally varying pressure gradient. Looking for a solution in which the
velocity is independent of the x-position, it is evident from the continuity equation that uy

takes its boundary value everywhere. Thus the Navier–Stokes equation reduces to

∂ux

∂t
= − 1

ρ

∂p

∂x
+ ν

∂2ux

∂y2
(2)

with boundary conditions ux|y=±a = 0 and where ρ is the fluid density. Substituting the
expression for the pressure gradient, equation (1), into equation (2) and writing the velocity as

ux = u(y) eiωt (3)
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leads to the final form of the equation: ∂2u/∂y2 − (iωu)/ν = −p∗/ρν. The final expression
for the velocity is [13]

ux = Re

{
p∗

iωρ

[
1 −

cosh
[

1√
2
(α + iα)

y

a

]
cosh

[
1√
2
(α + iα)

]
]

eiωt

}
(4)

where Re denotes the real part of the solution. Noting that cosh(α + iα) � 1 + iα2, for small
α, equation (4) reduces to

ux � p∗

2νρ
(a2 − y2) cos(ωt) (5)

which is simply a quasi-steady flow in which the velocity profile at any time is the same
as that for Poiseuille flow with the relevant forcing term. For large α we can express
cosh(α + iα) � 1

2 e|α| ei|α| in which case equation (4) reduces to

ux � p∗

ωρ
sin(ωt) (6)

that is, a flat profile across the tube which is oscillating sinusoidally with time.
The second category of disturbed laminar flow refers to observations of small amplitude

perturbations superimposed on the velocity traces during the acceleration phase of the flow
before reverting to the laminar case. The transition of flows to this category seems to be quite
sensitive to the particular experimental set-up, whereas the transition to the third category,
where explosive turbulent bursts are observed towards the end of the acceleration phase, is
much more clearly defined with transition occurring in the range 500 < Reδ < 550. These
turbulent bursts are largely independent of the experimental set-up and there is consistent
published data available [1–6]. Despite this, the number of successful theoretical investigations
is limited since there is a lack of derivations of the critical Reynolds number based on linear
theories from which nonlinear theories can be developed. It is generally agreed that transition
to turbulence is due to local instabilities in the Stokes boundary layer as long as the boundary
layer is small compared to the physical dimensions of the problem. In view of the general
consensus on the location of the onset of turbulence much of the theoretical work revolves
around studying infinitesimal disturbances in the Stokes layer for which the equations of
motion can be linearized. The problem is generally approached using Floquet or quasi-
steady theories [7–9]. In quasi-steady theories the spatially dependent profiles of the flow
are examined at different instances in time and therefore the profiles have only a parametric
dependence on time. This method differs from time-dependent ones that use Floquet theory
to examine disturbances in the periodic steady state. However, these either do not predict the
correct phase for the onset of turbulence or do not predict instability growth over a large range
of Reδ and wavenumber.

The discord between theory and experiment can be explained by a secondary instability
mechanism whereby the existence of finite-amplitude waves leads to vortical structures within
the flow that are inviscidly unstable to three-dimensional perturbations. The broadband nature
of this instability provides a mechanism for the rapid generation and growth of small scales
from a smooth velocity profile. Akhavan et al [10] have performed a numerical simulation
based on this mechanism which is consistent with experimental observations.

The transition to turbulence in many shear flows, such as pipe, Poiseuille, Couette,
free shear layer and boundary-layer flows, is the result of instabilities of two-dimensional
equilibrium waves to three-dimensional disturbances. Here we are concerned with the primary
instability which generates the initial two-dimensional disturbance. The range of α or Reδ

currently investigated provides a consistent and broad evaluation of the phenomenon. In the
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current implementation an excitation of all simulated wavenumbers is used as a certain level
of noise is always present throughout the flow fleld [10]. This differs from previous theoretical
and numerical studies which have largely concentrated on examining growth (or decay) rates
of initial perturbations at critical phases within the cycle and in the case of numerical studies
of a single wavenumber. Furthermore in the case of Akhavan et al [10], a linearized model of
the Navier–Stokes equation is used. Prior to discussing the results of the simulations, some
theoretical and implementation aspects of the LBM are given.

3. The lattice Boltzmann model

In the current investigation the LBM is implemented in two dimensions on a square lattice,
using the nine-vector model [14], the so-called D2Q9 lattice. The discrete lattice Boltzmann
equation for the particle distribution function takes on a similar form to the kinetic equation
of the lattice gas model

fi(x + ei , t + 1) − fi(x, t) = �i(f (x, t)) (7)

where the distribution functions fi(x, t) evolve on a fixed lattice along the links, ei , where i is
an integer labelling the link and

ei =




(0, 0) i = 0

(cos[(i − 1)π/2], sin[(i − 1)π/2]) i = 1, 2, 3, 4

(cos[(i − 5)π/2 + π/4], sin[(i − 5)π/2 + π/4]) i = 5, 6, 7, 8.

(8)

The fluid density, ρ, and velocity, u, at each site can be calculated from the distribution
functions as

ρ =
∑

i

fi and ρuα =
∑

i

fieiα (9)

where the Greek subscripts represent vector components and summation over repeated Greek
indices is assumed. Using the Bhatnagar–Gross–Krook approximation [15, 16] to the collision
operator greatly simplifies the Boltzmann model with the approximation given by

�i = − 1

τ
[fi(x, t) − fi(x, t)] (10)

where τ is the relaxation time and fi is the equilibrium value of the distribution function. This
takes the general form [11],

fi(x, t) = ρ(ai + biei · u + ci(ei · u)2 + diu
2) i = 0, . . . , 8 (11)

where ai, bi, ci and di are constants that depend on the specific lattice being used and the
required properties of the fluid. The constants ai, bi , ci, di are chosen so that the collisions
satisfy the conservation of mass and momentum and that the fluid is isotropic, exhibits Galilean
invariance and satisfies the continuity and Navier–Stokes equations. The values applied here
are [14]

ai = wi bi = 3wi ci = 9
2 wi and di = − 3

2wi (12)

where w0 = 4/9, w1 = w2 = w3 = w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36. The
distribution function can be expanded about the equilibrium value, fi → fi + εf

(1)

i + ε2f
(2)

i ,
where ε is the Knudsen number which must be small. By substituting this expansion into
equation (7), performing a Taylor expansion and after some algebraic manipulation the
conservation of mass equation,

∂ρ

∂t
+

∂ρuα

∂xα

= 0 (13)
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can be derived. Similarly a momentum equation can be found as

∂ρuα

∂t
+

∂ρuβuα

∂xβ

= − ∂p

∂xα

+ ν
∂

∂xβ

(
ρ

∂uβ

∂xα

+ ρ
∂uα

∂xβ

)
. (14)

When the flow speed is sufficiently smaller than the speed of sound, cs = 1/
√

3 in lattice units,
equations (13) and (14) represent the Navier–Stokes equation for an incompressible fluid in
two dimensions with equation of state p = ρc2

s and kinematic viscosity ν = (2τ − 1)/6 [17].
A number of schemes have been proposed to implement a no-slip boundary condition (see,

for example, [18–20]). At the boundary there are a number of distribution functions which are
not defined after the streaming action of the LBM implementation. These are in the directions
pointing away from the boundary. When applying the boundary conditions it is necessary to
determine the values for these distribution functions. The simplest method is a bounce-back
boundary which is derived from the lattice gas model in which any particle approaching
the boundary is reflected back in the direction from which it came. An alternative approach
proposed by Noble et al [18] can be applied to a plane wall parallel to one of the link vectors ei .
In this case there are three unknown distribution functions pointing from the solid boundary
into the fluid. These three unknowns are found such that

∑
ifieiα = ũα , where ũ is the known

wall velocity (zero velocity for a stationary no-slip boundary) and the internal energy of the
system is conserved during the collision. Here both systems of boundary conditions were
implemented; however, the simple bounce-back condition provided adequate accuracy and
was therefore applied in all the simulations presented here. When the bounce-back boundary
condition is applied at a halfway wall, that is a wall placed halfway between a row of ‘boundary
sites’ and a row of ‘fluid sites’, the boundary condition exhibits second-order accuracy
[21, 22]. The bounce-back condition is especially useful when considering more complex
wall geometries. Periodic boundary conditions were imposed at the open ends of the channel.

The oscillating pressure variation in equation (1) was implemented as a body force
F = (p∗ cos ωt, 0) [23]. This was done by introducing an additional term to the Boltzmann
equation [24], equation (7), to give

fi(x + ei , t + 1) − fi(x, t) = �i(f (x, t)) + 3
2τ − 1

2τ
wiFαeiα (15)

and redefining the fluid velocity [24] (equation (9)) as

ρuα =
∑

i

fieiα +
Fα

2
. (16)

This implementation of a body force can be shown to satisfy the continuity and Navier–Stokes
equations up to second order [24].

In the laminar simulations, the velocities are the same at all points in the streamwise
direction so a channel length of five sites was used to improve computational efficiency. In the
turbulent simulations the length of the channel was varied in the range 2N < M < 10N for
selected values of α and Reδ . Here N is the grid size in the streamwise direction. No significant
difference was found in the results between the differing channel lengths in the context of the
present work and so a channel length of M ≈ 2N was chosen for computational efficiency.
Since a good agreement is observed between the simulations and the analytic theory in the
laminar case and since the simulation can take a significant number of oscillations to converge
from an initially stationary state the turbulent simulations were initialized with a constant
density and with a velocity calculated from equation (4).

For the Reynolds numbers considered in this study the turbulent motion can be simulated
directly using the LBM [25, 26]. Martinez et al [25] use the direct LBM approach to simulate
turbulent flows with Reynolds numbers,Re, as high as 10 000 and find good agreement between
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Figure 1. Profiles of increasing (growing) (a) and decreasing (b ) velocities along the width of a
channel for α = 5.606. Profiles of growing velocity for α = 1.0856 (c) and α = 30.706 (d ). The
phase ωt indicates the temporal location of the velocity relative to the forcing pressure gradient
and is given by ωt = nπ/8, where n is an integer, n = 0, . . . , 15.

the LBM results and the results obtained using a spectral method. To trigger the turbulence
it is necessary to introduce a small random variation into the simulation in order to disturb
the inherent symmetry. This was done by perturbing the forcing term to produce small
irregularities in the flow.

4. Results and discussion

4.1. The laminar case

Figures 1(a)–(d ) compare the exact analytical solutions of equation (4) to numerically
evaluated velocity profiles across the channel for α = 1.085, 5.606 and 30.706. The velocity
is normalized by the term

uc = p∗α2

2ωρ
(17)

which is the velocity that would be observed at the centre of the channel if a constant
forcing term per unit volume of p∗ were applied in the limit of α → 0. The y-axis is non-
dimensionalized by dividing by the half-width of the channel as indicated in figures 1(a)–(d ).
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Figure 2. The global error ξ plotted as a function of the channel width M for α = 2.00, 9.71 and
14.00. The solid curve is a line with slope m = −2.

The first two graphs (figures 1(a) and (b)) indicate the evolution of an oscillation over an
entire period at discrete phases ωt = nπ/8 of the driving force, with n being an integer,
n = 0, . . . , 15 for α = 5.606. Figures 1(c) and (d ) show the evolution of an oscillation with
the velocity increasing over half a period for α = 1.0856 and 30.706, respectively.

Figures 1(c) and (d ) indicate, respectively, that for low and high α values the velocity
profiles approach the limits described by equations (5) and (6). At intermediate values of α,
velocity profiles are obtained with characteristic points of inflection as shown in figures 1(a)
and (b). These inflection points are important in the generation and transfer of turbulence and
these are discussed more fully in the following subsection. It is evident from the graphs of
figure 1 that the phase is spatially dependent and that the phase shift between the forcing term
and velocity varies as the flow changes from a viscous-dominated system at relatively low
values of α to a momentum-dominated system at relatively high values of α, in the laminar
regime.

For a quantitative analysis of the errors a global error, ξ , was defined as

ξ =
∑

t

∑
x |ub(x, t) − ua(x, t)|∑

t

∑
x |ua(x, t)| (18)

where |f (x)| denotes the modulus of f (x). Here the difference between the velocities of the
exact analytical solution, denoted by the subscript a, and the Boltzmann solution, denoted by
the subscript b, was calculated and then summed over all points on the discrete lattice and over
an entire period of oscillation after a convergence criterion ζ ,

ζ =
∑

x

|ub(x, t + T ) − ub(x, t)|
|ub(x, t + T )| � 10−7 (19)

was attained. Figure 2 graphs the global errors as a function of the channel width M for a
number of different values of α. For a given α, as the lattice size was increased α was kept
constant by varying the period T accordingly within the range T > 103; the value of τ was
kept constant. In figure 2, the straight line has a slope m = −2 indicating that, for T > 103,
the LBM incorporating the halfway bounce-back boundary conditions and the second-order
accurate forcing term, is itself second order in accuracy. For T < 103 errors become significant
and are of the order T −1, consistent with [27] where oscillatory flow has been investigated for
20 < T < 500. He and Luo [28] report a scheme accurate to second order in time, however,
in the present investigation since T is of the order 10−6 for the transition simulations of the
following section the temporal error of the current implementation is negligible.
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To determine the compressibility effects, the Mach number, Mc, was varied over the range
9.432×10−4 to 3.772×10−1 by varying the pressure gradient term from 2×10−6 to 8×10−4.
The period, viscosity and grid size were kept constant, T = 1600, ν = 0.066 and M = 80
giving α = 9.708. In all cases the global error was found to be constant to within ±5 × 10−15

with the difference between the results within an order of magnitude of the numerical rounding
error. Therefore, the implemented model is effectively incompressible in the laminar regime.
We note that with reference to the turbulence regime mentioned in the following section, the
fluctuating velocities at the onset of turbulence have Mc < 10−3 with the maximum fluctuating
velocities having Mc of the order 10−2. Errors due to compressibility scale as O(Mc2) [25, 29]
and the value of Mc for the fluctuating velocities is significantly smaller than the value of
0.069 used by Martinez et al [25] who obtained a good agreement between LBM and spectral
simulations of decaying turbulence. Reider et al [29] considered the errors for the evolution of
a decaying Taylor vortex and showed that the error decreases with increasing spatial resolution
until it reaches a saturation point at which the error remains constant. The value of the error
at the saturation point is seen to decrease as O(Mc2). The lowest Mach number considered
by Reider et al [29] is 0.031 25 which gives a velocity error due to compressibility errors
of 0.000 57. The above considerations indicate that the maximum relative velocity error
associated with compressibility in the turbulent simulations is negligible.

4.2. The turbulent regime

The numerical solutions of the LBM were perturbed to trigger transition. A continual
disturbance was superimposed on the flow with all wavenumbers, λ = (λm, λn) in the range
0 < λm < 2π/M, 0 < λn < 2π/N excited equally, where M and N are the numbers of
grid points in the streamwise and spanwise directions, respectively. The disturbance had an
energy of the order 10−2, which when normalized to the energy of the mean flow is similar
in magnitude to those of Akhavan et al [10]. This resulted in a velocity U of the form, U =
ū + u′, with ū and u′ being the mean and fluctuating components, respectively. The averaged
velocity ū was defined as

ū(n, ωt) = 1

M

M∑
m=1

u(m, n, ωt). (20)

For selected values of α, ū was also averaged over P oscillations, that is

u∗(n, ωt) = 1

P

P−1∑
p=0

ū(n, ωt + 2πp) (21)

however u∗ and ū did not vary significantly in the context of the current discussion.
Furthermore, in the present investigation, |ū| � |u′| and it was noted that calculating
the fluctuating component either as u′ = U − ū or alternatively as u′ = U − ua, where
ua = {ux(y, t), uy = 0} is given by the exact analytical solution of equation (4), yielded results
whose differences were negligible for the purposes of the present discussion. Equation (20)
was chosen as the most efficient implementation of the average.

Figure 3 shows the fluctuating component of the velocity for α = 14.1, Reδ = 800, over
a section of the channel. Prior to transition the fluctuating component, due to the numeric
perturbation, is several orders of magnitude smaller than that after transition and there are
no clearly defined vortex structures such as those in figure 3. Transition is thus very clearly
observed. Similar vortex structures were found for all α and Reδ after the onset of turbulence.
Although the vortices interacted in a complex fashion depending, as expected, on α, Reδ and
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Figure 3. Vector map of the fluctuating velocity after flow reversal showing vortex interaction for
α = 14.1, Reδ = 800.

the phase ωt of the flow, the following general observations were made. The vortices originated
in the Stokes layer at flow reversal, typically growing and shearing to a size of the order of
δ. In some cases several vortices would form and interact, exchanging momentum under
this shearing action. These vortices close to the boundary set up counter-rotating vortices in
the main flow which grew to a size of the order of a. The large rotations tended to sweep
the turbulence, generated close to the boundary, into the main flow where relatively complex
interactions between the small and large eddies and the main flow took place.

These observations can be presented in a more global and quantitative manner by looking

at the turbulent intensity q =
√(

u′
m

2
+ u′

n

2)
, with u′

m and u′
n being the normalized values of the

fluctuating components in the streamwise and spanwise directions, respectively. These profiles
are rendered as grey-scale plots of intensity with suitably non-dimensionalized variables
q = q(y/a, ωt) for selected values of α and Reδ in figure 4. Superimposed on these plots
are lines of zero velocity which serve as references of flow reversal. Lines which correspond
to the temporal evolution of these inflection points are also displayed. Both these lines were
calculated from the exact analytical solutions of equation (4). For allα and Reδ investigated, the
primary instability is triggered in the (ωt, y/a) space where flow reversal occurs in the region
of a point of inflection or a critical layer which can clearly be seen in figures 4(a)–(d ). This
is in agreement with quasi-steady linear stability theories where the least stable eigenmodes
have peak energies in the Stokes layer in the vicinity of inflection points or critical layers and
occur at the beginning of the acceleration phase. In figure 4(a), for α = 4.5, Reδ = 850,
transition occurs close to the boundary and this is swept rapidly into the centre of the channel.
The turbulence intensity then decreases by almost an order of magnitude. At ωt ≈ 3.5(1.1π)

there is growth in the turbulence in the region of an inflection point, y/a = 0.4, and this
propagates into the channel down to y/a ≈ −0.5. The turbulence intensifies and moves
towards the centre of the channel over 1/10 of an oscillation before decaying. As α is increased,
figure 4(b), the turbulence evolves in a similar fashion with increasing intensity. The results
also suggest that the instability modes follow the inflection points as they move away from
the wall. Hence the most intense turbulence does not reach the centre of the channel for
higher values of α, as can be seen in figure 4(c). Although Kerczek and Davis [9] concluded
that the instability modes were unable to take advantage of the Rayleigh mechanism to grow,
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Figure 4. Grey-scale maps of turbulent intensity plotted as a function of ωt and non-dimensional
channel width: (a) α = 4.5, Reδ = 850, (b) α = 7.0, Reδ = 850, (c) α = 14.1, Reδ = 800 and
(d ) α = 14.1, Reδ = 500. Also shown are lines (dashed) of zero velocity which serve as references
of flow reversal as well as solid lines which indicate the temporal evolution of inflection points.

Monkewitz and Bunster [7] later concluded that the linear transfer of energy between modes
might very well follow points of inflection.

With reference to figure 4(d ), with α = 14.1, Reδ = 500, the initial disturbance field
is localized near the wall with energy peaks near the linear critical layer and neighbouring
inflection points; we also note that at ωt = 2π the disturbance exists on only one side of the
channel. In general, as Reδ is lowered the frequency of transition decreases, the intensity of the
turbulence is less and the rate and extent of propagation into the centre of the channel decrease.
These general trends can be seen by comparing figures 4(c) and (d ), for α = 14.1, Reδ = 800,
and Reδ = 500, respectively. Akhavan et al [10] investigated the primary instability with
α = 14.1 and Reδ = 1000 using a spectral method and using a linearized model of the
Navier–Stokes equations. The flow was initially disturbed with a wavenumber λ = 0.5 and
the evolution of the energy across the width of the channel was plotted. As in the case of the
current investigation the initial disturbance field was localized near the wall with energy peaks
near the linear critical layer and neighbouring inflection points with the disturbances quickly
migrated towards the centre of the channel.
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4.3. Future work

The two-dimensional analysis presented here is relevant in three-dimensional flows since in
the transition regime the primary instability is expected to be two dimensional. This primary
instability does not appear to transfer energy directly, but aids effective stretching of the three-
dimensional disturbance, an important part of the secondary mechanism which appears to be
responsible for the explosive turbulence observed in experimental flows towards the end of
the acceleration phase. Evidently three-dimensional modelling is required to investigate this
further.

The evaluation and application of the LBM in the current investigation serves as a prelude
to numerical and experimental studies in vascular applications. Therefore, effects such as
elastic boundaries and geometrical effects need to be addressed.

5. Conclusions

The lattice Boltzmann method has been successfully applied to oscillatory channel flow with
a zero mean velocity for a broad range of α and Reδ . In the laminar regime there was
good agreement between numerical and exact analytical solutions. The accuracy of the
implemented scheme was found to be of second order in space and of first order in time. The
primary instability was examined and found to be consistent with quasi-steady linear stability
theories and previous numerical investigations.
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